National Repository of Grey Literature 19 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
The role of p130Cas substrate domain mediated signaling in cancer cell migration, invasiveness and metastasis of cancer cells
Zemanová, Kateřina ; Brábek, Jan (advisor) ; Čáslavský, Josef (referee)
p130Cas (Crk-associated substrate) was first described over 30 years ago as a protein that associates with the v-src and v-crk oncoproteins and undergoes tyrosine phosphorylation. Proteins of the CAS family are an important part of cellular biological processes in normal and pathological situations. The existence of 15 YXXP repetitive motifs is characteristics for substrate domain. p130Cas is an adapter protein that allows interactions between proteins that lead to assembly of multiprotein complexes. The p130Cas protein regulates these multiprotein complexes, which further drive chemotaxis, apoptosis, differentiation and migration. Overproduction of CAS proteins was found in connection with a poor prognosis and an increased incidence of metastases. Also, the elevated expression of proteins of the CAS family is related to resistance to some types of chemotherapeutics.
Functional analysis of the internally disordered structure of the substrate domain in p130Cas protein biology
Hejnarová, Marie ; Rösel, Daniel (advisor) ; Gemperle, Jakub (referee)
The p130Cas protein is an important mechanosensor in cell adhesive structures such as focal adhesions and podosomes. There, the protein is subjected to mechanical tension that underlie its participation in integrin signaling. At the level of p130Cas, the mechanical force is transduced into a chemical signal. Although p130Cas does not exhibit enzymatic activity, its high binding potential turns it into an important signaling junction that ensures signal distribution to different cellular pathways. As a result, p130Cas has a profound effect on fun- damental cellular processes such as cell proliferation, differentiation and motility. In addition to its irreplaceable role in embryonic development, its involvement in the origin of patholo- gies has also been reported. As a major substrate for Src kinase, p130Cas can participate in signaling leading to tumor transformation and further malignant development. Its upregulated expression is ofen observed in aggressive types of metastasizing tumors, such as breast, prostate, and melanoma cancer. Therefore, in recent years, the possible use of the p130Cas protein as a potential target for migrastatics under development has been discussed. Within this thesis, we focus on the functional analysis of the p130Cas substrate domain. This domain is respon- sible for...
Sparse Representation for Classification of Posture in Bed
Mesárošová, Michaela ; Mihálik, Ondrej
Redundant dictionaries, also known as frames, offera non–orthogonal representation of signals, which leads to sparsityin their representative coefficients. As this approach providesmany advantageous properties it has been used in various applicationssuch as denoising, robust transmissions, segmentation,quantum theory and others. This paper investigates the possibilityof using sparse representation in classification, comparing theachieved results to other commonly used classifiers. The differentmethods were evaluated in a real-world classification task inwhich the position of a lying patient has to be deduced basedon the data provided by a pressure mattress of 30×11 sensors.The investigated method outperformed most of the commonlyused classifiers with accuracy exceeding 92%, while being lessdemanding on design and implementation complexity.
Sparse Representation of Signals
Mesárošová, Michaela ; Arm, Jakub (referee) ; Jirgl, Miroslav (advisor)
People who are immobile or lie for long periods are at high risk of developing pressure ulcers and require additional care. Therefore, it is necessary to monitor the condition of such persons as simply and efficiently as possible. In this work, we focus on processing the signals provided by a pressure mattress with a 30x11 sensor grid on which a person lays and the possibilities of its use after conversion into sparse representation coefficients. Redundant dictionaries, also known as frames, enable non-orthogonal representation of signals, which leads to a sparse representation of coefficients. Since this approach provides many advantageous properties and is being used in various applications, such as denoising, segmentation, robust transformations, quantum theory, and others, we verified the possibility of classifying a person’s lying position based on a sparse representation. The results were compared with other traditional classification methods, which were found to be less suitable for the classification problem, with the best-achieved result of 92.41 % for CNN, but with high demands on time, design and complexity. The success rate of the classification reached 92.76 %, with fewer demands on design and implementation complexity. The possibilities of classification and reconstruction of an image containing occlusions were also investigated, where the sparse representation proved to be an effective method to remove these defects.
Adhesion structures of leukemia cells and their regulation by Src family kinases
Obr, Adam
Adhesion signaling is a field of cell biology studied mostly on adherent cell types. However, hematopoietic cells grow in suspension, and use adhesion to the extracellular matrix (ECM) only in their early development, or - in case of differentiated cells - to perform the tasks they are specialized for. Peripheral leukemic cells are derived from more or less immature hematopoietic precursors that have, among other alterations, defects in adhesion to the bone marrow microenvironment. On the other hand, leukemic stem cells (LSC) use adhesion to the bone marrow ECM as a mean to evade chemotherapy, and are a source of the minimal residual disease, and of the disease relapses. Kinases of the Src family (SFK) are known regulators of adhesion signaling in adherent cell types, and their overexpression and/or hyperactivation is often seen in malignant diseases. They are also involved in hematooncologic disease progression and resistance to therapy, particularly in several types of leukemias. In the present work, we used a variety of methods including microimpedance measurement, fluorimetric measurement of adhered cell fraction, immunoblotting, confocal microscopy, and interference reflection microscopy. Our results indicate that active Lyn kinase, a hematopoietic SFK, is present in adhesion structures of...
Adhesion structures of leukemia cells and their regulation by Src family kinases
Obr, Adam ; Kuželová, Kateřina (advisor) ; Brdička, Tomáš (referee) ; Brábek, Jan (referee)
Adhesion signaling is a field of cell biology studied mostly on adherent cell types. However, hematopoietic cells grow in suspension, and use adhesion to the extracellular matrix (ECM) only in their early development, or - in case of differentiated cells - to perform the tasks they are specialized for. Peripheral leukemic cells are derived from more or less immature hematopoietic precursors that have, among other alterations, defects in adhesion to the bone marrow microenvironment. On the other hand, leukemic stem cells (LSC) use adhesion to the bone marrow ECM as a mean to evade chemotherapy, and are a source of the minimal residual disease, and of the disease relapses. Kinases of the Src family (SFK) are known regulators of adhesion signaling in adherent cell types, and their overexpression and/or hyperactivation is often seen in malignant diseases. They are also involved in hematooncologic disease progression and resistance to therapy, particularly in several types of leukemias. In the present work, we used a variety of methods including microimpedance measurement, fluorimetric measurement of adhered cell fraction, immunoblotting, confocal microscopy, and interference reflection microscopy. Our results indicate that active Lyn kinase, a hematopoietic SFK, is present in adhesion structures of...
The search for novel interaction partners of SH3 domain of an adaptor protein p130Cas
Gemperle, Jakub ; Rösel, Daniel (advisor) ; Forstová, Jitka (referee)
Protein p130Cas is the major tyrosine phosphorylated protein in cells transformed by v-crk and v-src oncogenes. P130Cas plays an important role in invasiveness and metastasis of Src-transformed cells. In breast cancer patients, high p130Cas levels are associated with higher recurrence of disease, poor response to tamoxifen treatment and lower overall survival. In non-transformed cells, after the stimulation of integrins, protein p130Cas is phosphorylated in substrate domain affecting cell migration and cytoskeletal dynamics. For this signalling is the SH3 domain of p130Cas indispensable. In this thesis, was for the first time using the Phage display method analysed and subsequently characterized the binding motif of SH3 domain of p130Cas. Based on this high-affinity motif [AP]-P-[APMS]-K-P-[LPST]-[LR]- [LPST], we predicted new interaction partners of protein p130Cas and subsequently confirmed the interaction with the Ser/Thr kinase PKN3. This kinase colocalizes with p130Cas in the nucleus and perinuclear region and could phosphorylate p130Cas. In this thesis, we also analysed the effect of phosphomimicking mutation of tyrosine from sequence ALYD, which is conserved in the sequence of SH3 domains, on ability of these domains to bind ligands. This mutation reduced binding by about 3 orders of...
Structural and regulatory aspects of Src kinase activation
Koudelková, Lenka ; Brábek, Jan (advisor) ; Brdička, Tomáš (referee) ; Hejnar, Jiří (referee)
Src kinase plays a crucial role in a multitude of fundamental cellular processes. Src is an essential component of signalling pathways controlling cellular proliferation, motility or differentiation, and is often found deregulated in tumours. Src activity is therefore maintained under stringent and complex regulation mediated by SH3 and SH2 domains and the phosphorylation state of tyrosines 416 and 527. Active Src adopts an open conformation whereas inactive state of the kinase is characterised by a compact structure stabilised by inhibitory intramolecular interactions. We identified phosphorylation of tyrosine 90 within binding surface of SH3 domain as a new regulatory switch controlling Src kinase activation. Using substitutions mimicking phosphorylation state of the residue we demonstrated that tyrosine 90 phosphorylation controls Src catalytic activity, conformation and interactions mediated by the SH3 domain, representing a positive regulatory mechanism leading to elevated activation of mitogenic pathways and increased invasive potential of cells. Based on correlation between compactness of Src structure and its catalytic activity, we constructed a FRET-based sensor of Src conformation enabling to measure the dynamics of Src activation in cells with spatio-temporal resolution. We found that...
Analyzing the role of the p130Cas SH3 domain in p130Cas-mediated signaling
Gemperle, Jakub ; Rösel, Daniel (advisor) ; Vomastek, Tomáš (referee) ; Truksa, Jaroslav (referee)
The adaptor protein p130Cas (CAS, BCAR1) represents a nodal signaling platform for integrin and growth factor receptor signaling, and influences normal development and tissue homeostasis. Its altered expression drives many pathological conditions including tumor growth, metastasis and drug resistance in many cancer types. How p130Cas contributes to many of these pathologies is still poorly understood. Therefore, the overall aim of my PhD work was to provide new insights to p130Cas signaling and its regulation. The SH3 domain is indispensable for p130Cas signaling, but the ligand binding characteristics of the p130Cas SH3 domain, and the structural determinants of its regulation were not well understood. To be able to study various aspects of p130Cas signaling we identified an atypical binding motif in p130Cas SH3 domain by establishing collaborations with Dr Veverka (Structural biology) and Dr Lepšík (Computational biochemistry; Academy of Sciences, CZ) which gave new insight into this binding interface. Through these collaborations I generated chimeras of p130Cas SH3 domain with its ligands for structural NMR analysis and learned how to visualize and analyze structures. Furthermore, my work expanded our knowledge of p130Cas SH3 ligand binding regulation and led to a novel model of Src-p130Cas- FAK...
Mechanism of inducible gene expression of resistance protein Vga(A)LC from Staphylococcus haemolyticus.
Novotná, Michaela ; Balíková Novotná, Gabriela (advisor) ; Lišková, Petra (referee)
The staphylococcal protein VgaA belongs to ARE ABCF family, which confers resistance to ribosome binding antibiotics by the target protection mechanism. VgaA confers resistance to lincosamides, streptogramins A and pleuromutilins and thus provides the so-called LSAP resistance phenotype. The expression of resistance genes often reduces fitness in the absence of an antibiotic, therefore the expression of resistance genes is often tightly controlled and triggered only in response to the presence of an antibiotic to which the protein confers resistance. The inducible expression has also been observed for the vgaA gene, nevertheless, its mechanism has not been elucidated. In the diploma thesis, it was shown that the vgaALC gene from Staphylococcus haemolyticus is regulated by ribosome-mediated attenuation. The mechanism is based on the detection of translation inhibitors via a ribosome translating a special regulatory open reading frame (uORF), which is part of an attenuator located in the 5' untranslated region of the mRNA. The vgaALC gene is regulated at the transcriptional level in response to LSAP antibiotics. Antibiotic specificity of induction is affected not only by the nature of the peptide encoded by uORF but also by the antibiotic specificity of the resistance protein. Fluorescence microscopy...

National Repository of Grey Literature : 19 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.